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Interface fluctuations, bulk fluctuations, and dimensionality in the off-equilibrium response
of coarsening systems
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The relationship between statics and dynamics proposed by Franz, Mezard, Parisi, an@ W elRi for
slowly relaxing systempPhys. Rev. Lett81, 1758(1998] is investigated in the framework of nondisordered
coarsening systems. Separating the bulk from interface response we find that for statics to be retrievable from
dynamics the interface contribution must be asymptotically negligible. How fast this happens depends on
dimensionality. There exists a critical dimensionality above that the interface response vanishes like the
interface density and below that it vanishes more slowly.dAtl the interface response does not vanish
leading to the violation of the FMPP scheme. This behavior is explained in terms of the competition between
curvature-driven and field-driven interface motion.
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Recently Franz, Mezard, Parisi, and Pe(fMPP have domains local equilibrium is reached rapidly while the coars-
proposed[1,2] a connection between static and dynamicening process is slow. In the case of nonconserved order
properties of slowly relaxing systems. This is of fundamentaparameter, as it will be considered here, the typical domain
importance for disordered systems such as spin glasses, singi&e grows likeL (t)~tY2 This phenomenology suggests the
the low-temperature equilibrium properties are hard to comsplit of the order parameter into the sum of two independent
pute and still object of controversy after many years of in-components6],
tensive study. The existence of a bridge between statics and _ _ .
dynamics then offers a useful alternative tool for the inves- d(X ) =¢(X, ) +o(X1), 1)
tigation of the equilibrium state. R

Here we are interested in the analysis of this connectionvhere ¢(x,t) describes equilibrium thermal fluctuations
for nondisordered coarsening systems, such as a ferromagngihin domains, the ordering componen@?,t) takes values
quenched below the critical point. In this case the structure- m; in the bulk of domains with the change of sign occur-
of the equilibrium state is simple and well known. Therefore,ring at the interfaces anah; is the equilibrium spontaneous

these systems are particularly suitable for a detailed undemagnetization. The splitl) accounts well for the observed

standing of the method. Nonetheless, existing results arbehavior [7] of the autocorrelation functionC(t,t")

quite puzzling. For the nearest-neighbors Ising model nu=<¢(§,t)¢(§,t')> where t=t'=0. This quantity can be

merical results in space dimensia=2 [3] fit into the  written as the sum of two terms

FMPP scheme, while recent exact analytical results in the

d=1 casd4] show a qualitatively different behavior exclud- t

ing any connection between the relaxation properties and the Ct,t")=Cg(t—t") +Cyy —,) (2

structure of the equilibrium state. In this paper we investigate t

the problem through a careful analysis of the linear response . . . .

function as the space dimensionality is changed. This allowkepresenting, respfctlvely, the stationary dynamics of ther-

to put together the rich and interesting picture of what goegna! fluctuationsy(x,t) and the slow out of equilibrium dy-

on in the off-equilibrium response of a coarsening systemmamics of o(x,t) obeying an aging form. At equal times

and to uncover the mechanism whereby the FMPP scheme &, (t—t’ =0)=mj—m4, wherem, is theT=0 spontaneous

or is not verified. magnetization, anC,4(1)=m#. Furthermore, due to the
Let us first outline the problem. We consider a phasewide separation of time scales, in the range of time over

ordering system with a scalar order parameter quenched gfich C, decays to zero, the aging contribution remains

the timet=0 from high temperature to a final temperatilire practically constanCag(t/t’)zm$.

below the critical point. The time evolution takes place by syppose, next, that at the tig>0 a small random field

formation and coarsening of domains of the opposite- . . = e R

equilibrium phase$5]. The characteristic feature of the pro- W't.h expectat!ons h(x)=0, h(x)h(y)=h05(x.— y) is

cess is the coexistence of fast and slow dynamics. WithisWitched on. Given the structu(), the perturbation affects

only the ordering component(x,t), leaving thermal fluc-

tuations unaltered, exactly as it happens in the equilibrium-

*Email address: corberi@na.infn.it ordered phase under the action of an external field. There-
"Email address: lippiello@sa.infn.it fore, e:i\ch unpetturbed (ionfiguratjon is mapped into a new
*Email address: zannetti@na.infn.it one ¢(X,t) — dn(X,t) = ¥(X,t) + o, (X,t) with a modified or-
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dering component. In general, the perturbation will modify 1.00 Ty T
both the bulk and the interface behavior®fx,t). Accord- 08
ingly, to linear order we may write o6 d=1
L 8 o4l
R ) . A ) ) 0.75 04 d=2
ah(x,t)=o(x,t)+f dx’ xg(x—x",t,ty,)h(x") _ d=1 02|
:': 0.0
. .. . \;éoso- 00 02 04 06 08
+f dx’ x;(x=x",t,t,)h(x"), (3) =" a
2 2 d=
mo-m T = —\\
~
where the bulk response functiops, accounting for the NN
change in the magnetization within domains, must be relatec ~ ** [ N
to thermal fluctuations via the equilibrium-fluctuation dissi-
pation theorem
T > >, - >, %0 02 02 06 08 1.0
Txp(X—X',t,t,) =Cs(X—X',t—=1,=0) = Cg(Xx— X', t—1,). C(tt,)

@ FIG. 1. Tx(t,t,) for the Ising model. Fod=2 the curve shows
At this point one can already get a glimpse into the con-the expected behavior on the basis of E8). for t,—o with T
ditions that must be realized for statics and dynamics to be=2.2,J=1. Ford=1 the curve is the plot of the analytic form of
connected. Since the bulk response functignprobes the Ref.[4]. The inset shows the correspondibgaq).
equilibrium fluctuations and that is where the information on

the equilibrium state is stored, for the FMPP scheme to work 1 5 1 5

the interface contributio, must disappear. Current belief is P(a)=3d(q—mp)+ 5 4(q+my). @
that indeed this is what happef,3,8 assuming thaty,

goes like the interface densify(t)~L*(t)~t~ % How- (b) Validity of the FMPP scheméf in Eq. (5) we take

ever, to a closer scrutiny things are not so straightforwardnto account only the bulk contributiogg, neglectingy; ,
and the interface contribution turns out to have more structhen the FMPP scheme is verified. In fact, using &j.and
ture than hitherto believed. In particular, there is an unexrecalling thatCag(t/t’)zm$ in the range of times where
pected dependence on dimensionality that, in the end, a@ (t—t’) decays to zero, from Eq4) follows
counts for the discrepancies in the Ising model mentioned
above. Before entering the calculation gf, it is useful to C(t,t)—C(t,t,) for m$< C< mé
complete the outline of the problem illustrating a few points. Tx(C)=
(a) FMPP scheme. Averaging over the external field and
the noise the on-site total response function is given by

8

2 2 2
mg—m3 for C=mjs.

Equation(6) then impliesP(q) = 8(q—m2). The presence of
1 one § function instead of two as in Eq7) does not mean
—— | dx v ) — that in the limith—0 symmetry is broken. Rather, it means
X(Ltw) hZVJ BLADINOO=xa(ttw) F X0 ). that from a response due only to thermal fluctuations it is
(5) impossible to distinguish one pure state from the other and
everything goes as if symmetry was broken. Numerical
In the FMPP scheme one assumes that this quantity obewsmulations of the Ising model fal=2 [3] show evidence
the out of equilibrium generalization of the FDT proposed byfor convergence toward the structu{® in the parametric
Cugliandolo and Kurchaf9], namely, that for large times plot of y versusC ast,, becomes largéFig. 1). This indi-
x(t,t,) depends on the time arguments through the autocorates that the interface terg in Eq. (5) must be asymptoti-
relation functiony(C(t,t,,)). Furthermore, one assumes that cally negligible.
IimeX(t,tW):Xeq, wherey.q is the equilibrium response (c) Violation of the FMPP schemeFrom the exact-
function. With these two hypothesis, the connection betwee@nalytical solution of thel=1 Ising model one finds a dif-
statics and dynamics is derived in the form ferent behavior. Ind=1 it is important to realize that in
order to make compatible the existence of a linear response
regime, which require$y/T<1 and thereforel >0, with
the existence of an equilibrium state of the fofif), one
B 2 2 . . must take the limit)— o in the ferromagnetic coupling. This
wherg D(q)._:TF[d .X(C)/dc ]C_:q IS th? dynamical "y, implies m2=m3. Hence, if Eq. (8) were to
quantity, whileP(q) =lim, _ Py(q) is the static onePn(q)  hold, Ty(t,t,) would vanish. Instead, one find§4]
is the overlap distribution in the perturbed Gibbs state. WeT y(C) = (y/2/)arctaiy2 cot(@C/2)] that vyields D(q)
recall that for a ferromagnetic system in the unperturbed= 7 cos@q/2)sin(r/2)/[2— sin(=/2q)]? and that is in no
Gibbs state belowl' - the overlap distribution is given by way related to Eq(7), as shown in Fig. 1. Furthermore,
[10] notice thatJ=oo leads to the suppression of thermal fluctua-

D(q)=P(q), (6)

061506-2



INTERFACE FLUCTUATIONS, BULK FLUCTUATIONS. .. PHYSICAL REVIEW E 63 061506

tions within domains. Therefore, from the above analytical  1¢° : ‘ .
form and x(t,t,)=x(t,t,) follows Ilim,_..Tx,(t,t,) y
=limc_oTx(C)=1/y2. Therefore, the violation of the o) GAF model "
FMPP scheme id=1 is due to an asymptotically dominant 107 | o
interface contribution. z

Having made clear the necessity of investigating the rela- w
tive importance of the bulk and interface terms as dimension-  10° | ) w
ality is varied, we now introduce a semiphenomenological = . ==
model for y,(t,t,,). This is based on the standard methods of% w2 deaio
the late-stage theory in phase-ordering kinefi6§ when =107 | Py
only interface motion is of interest. Dropping the bulk term - =

in Eq. (3 and defining o(x,t)=a(X,t)+ [dX x,(X - =
—x',t,t,)h(x’) we resort for this quantity to the time- [ s
dependent Ginzburg-Landau model without thermal noise

g 10‘11

- 10
=V20,+mia,— o2+ h(x). (9) t-t,

15

070'|
ot

10

Next, in order to allow for the action of the field on the 10 . - . .
interface motion, while keeping the domain saturation fixed

at the unperturbed levet m;, we make the ansatz w -
b) Ising model =
N u(x,t)
o(X,t) = —F—=, (10)
u?(x,t)

1+ >

m3 £

=2

and we make an approximation of the Gaussian auxiliary
field (GAF)-type [5,11]. The idea is that the nonlinearity of
the transformatior§10) is enough to take care of the nonlin-
earity in the problem and the auxiliary fielm(i,t) can be
treated in mean-field theory. Inserting Ed0) in Eq. (9) and

linearizing the equation of motion far(x,t) we find 107 5 0 pr e e o°
t-t,
au , 3 . . . .
—=V2u+ miu— —2<(Vu)2>+h(x), 11 FIG. 2. (8 Semiphenomenological modet.(t,t,) is mea-
Jt my sured in unitsA®"3 and time in unitsA ~2, with t,,=10%, m;=1

andA =1. (b) Ising model without spin flips in the bullg.¢¢(t,t,,)
where((Vu)?) is evaluated self-consistently. The key point is measured in unita/J, wherea=1 is the lattice spacing. Time is

is that the linear equatiofil1) allows u()z,t) to grow un- measured in Monte Carlo steps. Fbr1,2,3,4, the temperature,

boundedly yielding via(10) o,(f,t):mT sgr[u(f,t)] that Yamng time, and Ilne_ar system sizésof tbe simulations aré’/q

enforces the saturation of domains at the required unperh?/g-j‘g%f’ﬁ-ff“"w‘103'103'102'10' L=10°512,128,42 W'th.
. . . . =0.01, J=1, and averages over 170,6045,2590,922 realiza-

turbed value. Making a further mean-field approximatlontions_ The dashed lines are power laws with the corresponding ex-

through the replacement of Eq(100 by o(X,t)  ponenta. For d=3 in (b) the curve is very well fitted by 0.33

=m{u(t)1/[VSH)] with S(t)=(u?(x,t)), we have +0.066In{t,).

xi(tt) = Mmrxu(t,t,)/VS(t) wherey, is the response of the

auxiliary field. Computingy,(t,t,) andS(t) from Eq.(11)  contributing through an effective respongg;;. From Eq.

and definingyes(t,ty) by xi(t,tw)=pi (1) xers(t,t,) we find  (12) follows that this quantity obeys

our main result
Xefi(ttw) ~ (t—ty)%, (13
Xeri(t,t) =t PR (1, /) (12)
with a=0 for d>2, a=1-d/2 for d<2 and yes~ In(t
with F(x)=Afidyy @24 1—y+ty/t)"92 HereAis a  —t,) for d=2 [12]. Equation(13) applies both in the short
dimensionality-dependent constant amdis a microscopic  (t—t,<t,) and in the larget(—t,>t,,) time region, with a
time related to the momentum cutoff by t,=A 2. The change in the prefactor taking place aboutt,~t,,. The
meaning of Eq(12) can be made transparent regarding thefull time dependence of.¢(t,t,,) obtained by plotting out
response of the system as due to a set of interfaces eaély. (12) for different values ofl is displayed in Fig. &). A
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completely analogous behavior is obtained in the Isingoensates exactly forp,(t) producing a nonvanishing

model. We have computed(t,t,) for d=1,2,3,4 in

the Ising case by suppressing spin flips in the bulk of do-

mains and we have plotteg.(t,t,,) in Fig. 2(b) [13] . The
common features of Fig.(d) and Fig. Zb) may be summa-
rized stating that in both casgg¢; obeys the power-laWl3)
and that there exists a critical dimensionatitysuch that the
exponenta is zero ford>d. while it grows positive with
decreasing dimensionality fat<<d., reaching in both cases
the final valuea=1/2 atd=1. The differences are thal,
=2 in the GAF approximation, while from the Ising simula-
tions there is a good evideng¢€ig. 2(b)] for d.=3. One

lime_ox (t,ty).

In summary, we have investigated the relationship be-
tween the out-of-equilibrium response function and the struc-
ture of the equilibrium state for coarsening systems. For the
FMPP scheme to hold, the out-of-equilibrium response must
be dominated by equilibrium fluctuations in the bulk of do-
mains. This we have made precise by separating the bulk
from interface response and by analyzing the behavior of the
interface contributiony,(t,t,,). On the basis of a GAF model
we have found that there exists a critical dimensionality
=2 such that fod>d. x,(t,t,) behaves like the interface
densityp,(t), while for d<<d. it vanishes slower thap,(t)

particular consequence of this, on which we comment belowand does not vanish anymoredat 1, yielding the violation

is that while in the former case we hawe=0 with logarith-
mic growth atd=2, instead in thed=2 Ising model one
finds a=1/4 [Fig. 2(b)].

The interpretation of the above results goes as follows. |

curvature, as in the unperturbed cd&¢, but also by the
external field. These two mechanisms compete. dFod,
the curvature mechanism dominates. The external field th
affects only the spins strictly belonging to the interface.
Within a microscopic timey.¢; saturategsee lines ford
=3 in Fig. 2a) and ford=4 in Fig. 2b)] leaving the overall
responsey, to decrease ag (t). Instead, if dimensionality is
low enough I=<d.) to weaken the curvature mechanism to

the point that the field driven motion may start to play a role

in the response, then the single-interface respgpsegrows
with time like t* counteracting the default decreasedjndue

e

of the FMPP scheme. We have explained this behavior iden-
tifying d. as the dimensionality below that the external field
competes effectively with the curvature in driving interface
motion. The overall picture is confirmed by numerical results

the perturbed system interface motion is driven not only b;for the Ising model, apart from the upward shift fro

=2 tod.=3 in the critical dimensionality. This means that
in the Ising case the field-driven mechanism competes with
the curvature even more efficiently than in the GAF approxi-

ation. In particular, the field-driven mechanism is clearly
observable in thel=2 Ising model wherexr=1/4 makes the
interface response much less preasymptotic than what was
estimated on the basis of the interface density argument. Fi-
nally, the counterpart of the statement that a persistent inter-
face contribution leads to the violation of the FMPP scheme,
is that even ify(t,t,) vanishes asymptotically, due to the
field-driven interface motion it may vanish so slowly to hide
the realization of the FMPP scheme.

to p,(t). This effect can be understood realizing that when

interfaces are field driven the field produces a large-scale We acknowledge useful discussions with A. Coniglio, U.
optimization of domain positions with respect to field con- Marini Bettolo, and L. Peliti. This work was partially sup-
figurations[14]. d=1 is the extreme case where there is noported by the European TMR Network-Fractals Contract No.
more curvature mechanism. Then, interface motion is enFMRXCT980183. F.C. acknowledges support by INFM
tirely field driven yieldingy.¢s that grows liket*? and com- PRA-HOP 1999.
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